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Nucleophilic additions tdN-acyliminium ion$ constitute an (77P° ©: 24
important method for the synthesis of alkal@idand other O(CMey),0 &6 o
biologically active nitrogen heterocycles. Intermolecular reactions H
with a variety of different classes of carbon-based nucleophiles iPro, iPro 75 o~ N~ &
are possible, including allylsilanésther allylmetals,alkyl- and
arylmetals®®> alkynylmetals} TMSCN2d7 isonitriles/® enol O(CH2)20 B

derivatives’®’¢8and aromatic8.While a wide variety of nucleo-
philes are known to attackl-acyliminium ions, there are few
reactions with alkeny#1°or arylmetal derivatives, and we are

a1.4 equiv of boronate or acid, 4 equiv of BEt,O, —78°C, 2.5 h,
then warm to room temperature, 2.5%8 equiv of boronic acid.

not aware of any reported examples of additions of organoboronic 4¢igs with aldehydes and amines, for the synthesis of allylamines

acids or esterS. Such additions would be attractive because anqq.amino acidd?® This reaction was demonstrated not to occur
of the _9001(21 air and water stability of boronic acid or ester s girect addition to free iminium iori§a However, we consid-
derivatives:® Petasis and co-workers have recently developed a gre( that the greater reactivity isfacyliminium ions could enable

three-component coupling reaction of alkenyl- and arylboronic

*To whom correspondence may be sent (fax: 416-978-5059; e-mail:
rbatey@alchemy.chem.utoronto.ca).
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reaction with boronic acids and esters. We now report the first
examples of the reaction of alkenyl- and arylboronic acids and
esters withN-acyliminium ions.

3-Hydroxypyrrolidines were chosen as target structures, since
this motif is present in the polyhydroxylated indolizidine and
pyrrolizidine alkaloid families? which include many examples
of biologically active natural products, such as swainsonine,
castanospermine, retronecine, and australine. Pyrrolitliwas
therefore chosen as aacyliminium ion precursor. Oxidation
and protection of pyrrolidine according to the method of Kraus
and Neuenschwander gaMeCbz-2-pyrroline'® Dihydroxylation
using OsQ catalysis then afforded the desired precurdf
Reaction ofl with E-hexenyl boronic acid in the absence of a
Lewis acid did not lead to the desired adducts, but instead resulted
in esterification of the boronic acid by, However, addition of
the Lewis acid, boron trifluoride etherate, promoted addition of
the boronic acid to givea (Entry 1, Table 1). Prior esterification
of the boronic acids as the corresponding boronates has a
pronounced effect on the efficacy of addition (Entriest2 Table
1). Use of the pinacol or diisopropy! boronates produced a slight
improvement in yield, whereas the catechol boronates were poor
substrates. Both the diethanolamine and ethylene glycol boronates
gave excellent yields dfa. In all caseawas formed as a single
diastereomerx98:2 cisitrans by *H NMR).1”

The reaction is amenable to a range of alkenyl- and arylbor-
onates, producing exclusively thes-2,3-substituted products
(Table 2)!# Simple alkyl- and phenyl-substituteg-alkenyl
boronates give adducts havingB&alkene geometry (Entries—13,
Table 2). The alkene stereochemistry is maintained in the products,
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Table 2. Addition of Aryl and Alkenyl Boronates Scheme 1
OH 0 OH o
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OH R R 0"°~F"0TBDMS OH
BF3-Et,0, CH,Cl 1 -
CBZ 3-Et20, CHoCly cBZ OR EtOH, 4 °C

1 78 °Ctor.t. 2 BF3-Et,0, CH,Cla N
-78°Ctor. t. CBZ 69 %
Entry R Product Yield (%) 82%
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of the silyl ether furnishing dio® as a single diastereomer.
7 Z By 2h B Selective tosylation of the primary alcohol afford&@, which
Br on hydrogenation underwent cyclization to affdrl
Br Although the mechanism for the addition reaction has not been
s \/LBU % 77 proven, the requirement for Lewis acidic activation strongly
implies the intermediacy oN-acyliminium ions. The boronate
9 SAOBn 3 % attacksN-acyliminium ions derived from pyrrolidine and piperi-
0 S ~"08n . 81 din_e substrates _echL_Jsiver from the che pearingﬁh:s(ygen, _
which can be rationalized by a mechanism involving coordination
of boron to oxygen, producing an activated tetracoordinate
Table 3. Addition of Alkenyl Boronates td\-Acyliminium lons species! Further experiments will be required to elucidate the
Ry 0 Ry origin of stereoselectivity reversal for addition to tetrahydro-
m 0B g m quinoline 6. Two additional features of these reactions warrant
N~ OR: 4 N R4 further comment. First, whereas mé&acyliminium ion precur-

)\ BF3-Et20, CHyCl, A sors require protection of hydroxyl functionality, the addition of
0" ORs 78Ctor.t 0" ORg boronic ester nucleophiles tolerates free hydroxyl functionality.
Enty n  R; Rs Rz Ras product  yield (%) Second, the highly stereoselective nature of these additions is

unusual for the formation of 2,3-disubstituted heterocycles. For

1 1 OH Me Bn # 2 a instance, additions of trimethylallylsilane, trimethylsilyl cyanide,

2 1 OMe Me Bn Bu 3 e and alkyl copper reagents under Lewis acidic catalysis to the

3 1 H H Bn Bu 4 % 3-OAc and 3-OTBS analogues @f provide mixtures of trans

4 2 OH H Me pr 5 7 and cis product& c7a1ob

In conclusion, functionalizedN-heterocycles are efficiently
. . formed by the reaction of alkenyl- and arylboronates with
as was shown by the exclusive formation of thealkenyl- activated N-acyliminium ion precursors under Lewis acidic
substituted product in the addition of tHealkenyl boronate (Entry  catalysis. This methodology is advantageous relative to many
4, Table 2). Aryl boronates will also add, such as the phenyl and N-acyliminium ion based strategies, because of the ready avail-
p-methoxyphenyl boronates (Entries 5 and 6, Table 2). Impor- gapjlity, stability, low toxicity, and mildly nucleophilic character

tantly, functionalized boronates also add successfully, leading t0 of organoboronates. Further studies and applications of this
products ready for subsequent synthetic manipulations (Entriesyeaction will be reported in due course.

7—10, Table 2).
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